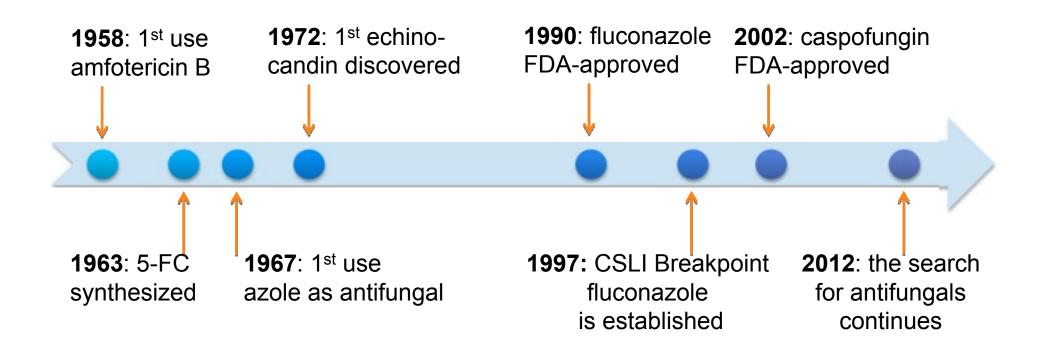
Treatment of invasive candidiasis in non-haematological patients

AML Oude Lashof, MD PhD Internist-infectiologist


Maastricht UMC+

ademisch ziekenhuis

🗞 Maastricht University

History of antifungal treatment

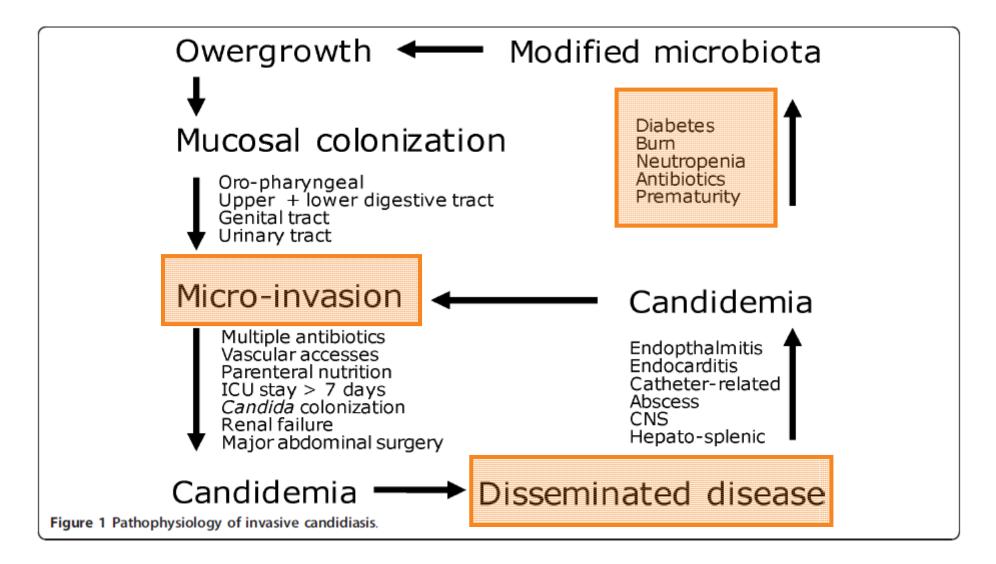
Risk factors for candidemia

Presence of intravascular catheters*

Neutropenia

Cancer chemotherapy

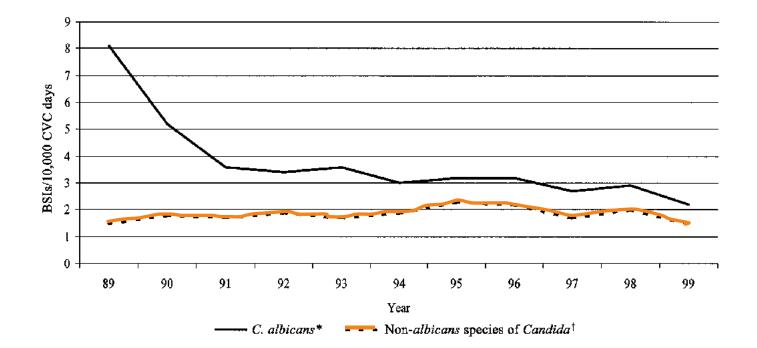
Prior colonization with Candida spp


Broad spectrum antibiotics*

Renal failure

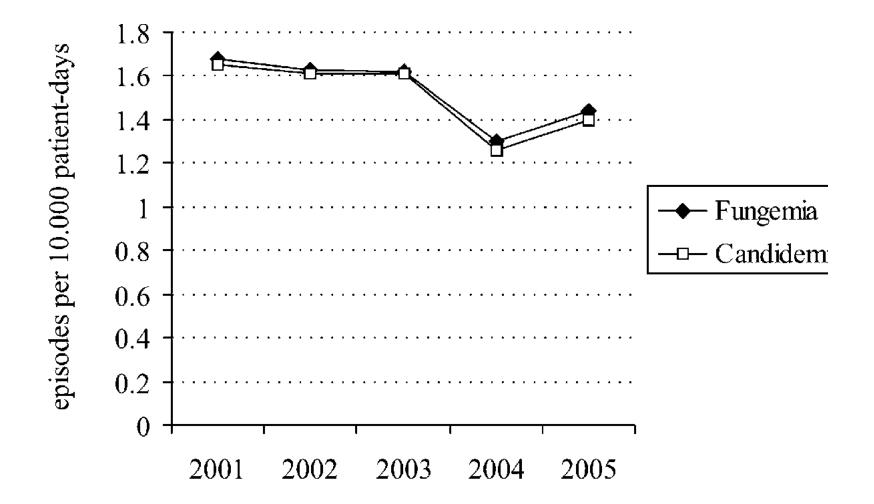
Hemodialysis

Pathophysiology of invasive candidiasis

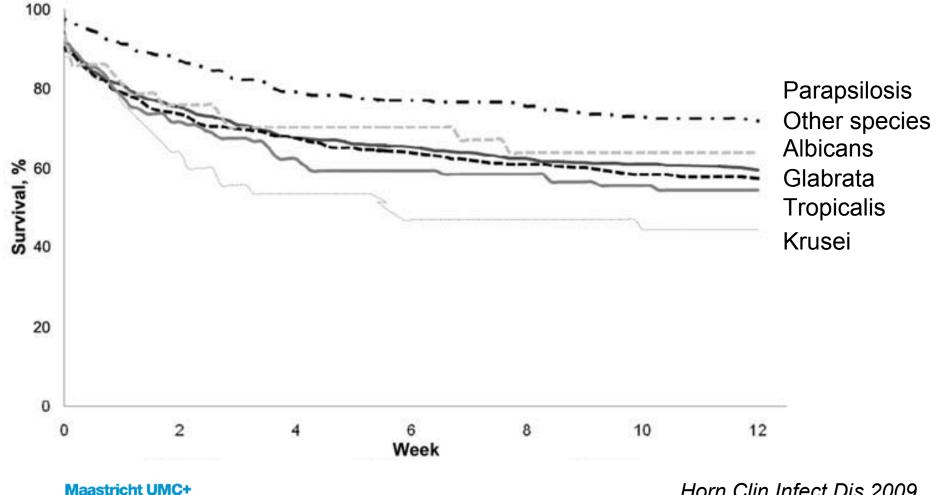


Maastricht UMC+

Eggimann et al. Ann of Intensive Care 2011, 1:37


Epidemiology

Mainly data from the USA or from individual European countries


Trick Clin Infect Dis 2002

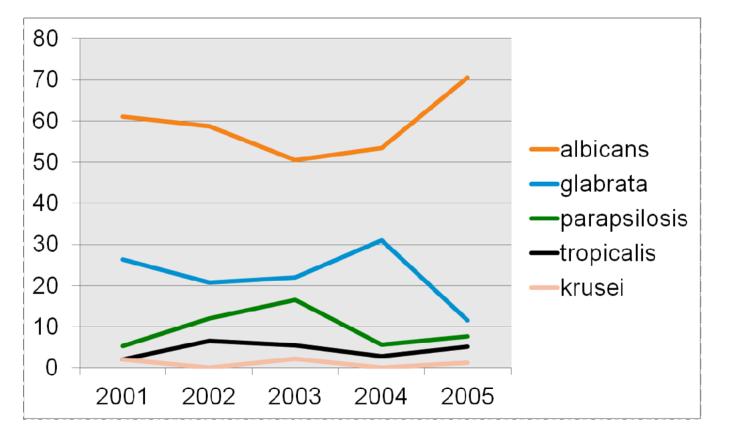
Candidemia incidence in Leuven

Lagrou, EJCMID 2007

Survival in candidemia, species related

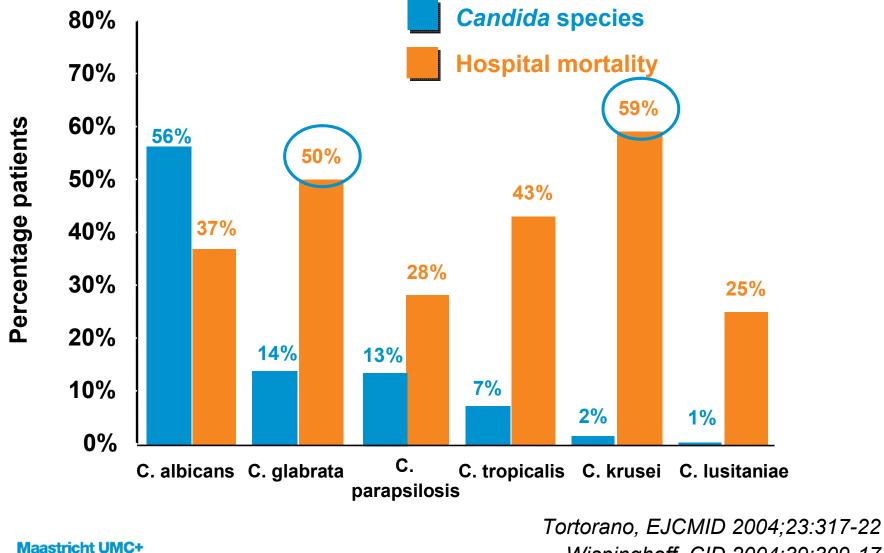
Horn Clin Infect Dis 2009

t 00


Question1 : Which Candida species is most frequently cultured from blood next to C. albicans (in Belgium)?

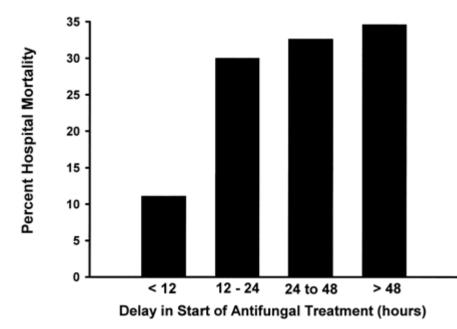
- 1 C. glabrata
- 2 C. krusei
- 3 C. parapsilosis
- 4 C. tropicalis

Question1 : Which Candida species is most frequently cultured from blood next to C. albicans (in Belgium)?



Mean 22% C. glabrata candidiaemia

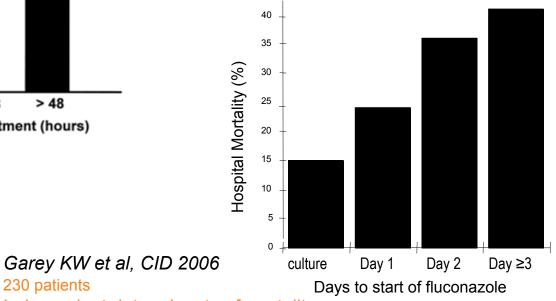
What would you start as primary therapy?


Lagrou, EJCMID 2007

Incidence and mortality of Candida Species in *Europe*

Wispinghoff, CID 2004;39:309-17

Time to start antifungal therapy & hospital mortality


Crude mortality rate is high, the attributable mortality rate varies between 5-71%! Falagas EJCMID 2006

Maastricht UMC+

Morrell M, et al. AAC 2005 157 patients - 2001-2004

Independent determinants of mortality:

- > APACHE II score (one-point increments) (p < 0.001)
- Administration of antifungal therapy >12 hours after the first positive blood culture (AOR, 2.09; p = 0.018)

Independent determinants of mortality:

> APACHE II score (Δ 1-pt.; p < 0.05)

230 patients

 \succ Time to fluconazole (AOR, 1.42; p = 0.0009)

HOW TO IDENTIFY PATIENTS AT RISK FOR CANDIDEMIA?

Maastricht UMC+

Question 2: Which factor has the greatest independent association with development 00 of invasive candidiasis ?

- 1 Abdominal surgery at baseline
- 2 Multifocal colonization
- 3 Severe sepsis at baseline
- 4 Total parenteral nutrition

Question 2: Which factor has the greatest independent association with development of invasive candidiasis ?

0%

1 - Abdominal surgery at baseline 0%

2 - Multifocal colonization 0%

- 3 Severe sepsis at baseline 0%
- 4 Total parenteral nutrition

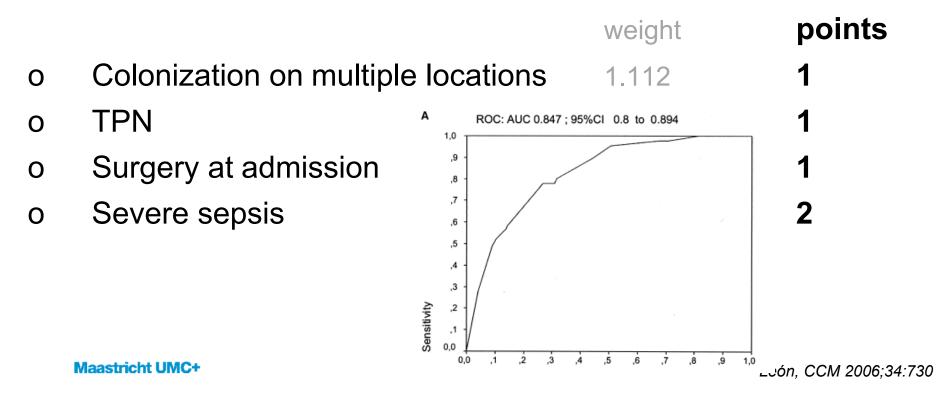
Prediction rules

- Paphitou: TPN, hemodialysis, diabetes, broad spectrum <u>antibiotics</u>
- Ostrosky-Zeichner:
 - CVC +/- broad spectrum antibiotics
 and at least 2 of:
 - TPN, hemodialysis, major surgery, pancreatitis, corticosteroids, immunosuppression
- **Candida score**: Multivariate analysis of risk factors that predispose for invasive candidiasis

Identification of patients

"Ostrosky rules"

≥ 4 days on ICU AND -Antibiotics (d 1-3) OR -CVC (d 1-3) And at least 2 of these TPN (d 1-3) Dialysis (d 1-3) Major surgery (d -7-0) Use steroids (d -7-3) Immunosupp. (d -7-0)


Ostrosky-Zeichner, 2007;26:271

Identify patients for empirical/ pre-emptive therapy

Development of "Candida score"

1699 patients, \geq 7 days on IC

Multivariate analysis of risk factors for candidemia

Question3: What's the problem with the prediction rules to start empirical treatment?

1 - High sensitivity, low specificity

2 - Low sensitivity, high specificity

3 - Only useful in high incidence areas

4 - 1+3

5 - 2+3

Question3: What's the problem with the prediction rules to start empirical treatment?

1 - High sensitivity, low specificity 0%

2 - Low sensitivity, high specificity 0%

3 - Only useful in high incidence areas 0%

4 - 1+3 0%

5 - 2+3 0%

Identification of patients

"Ostrosky rules"

≥ 4 days on ICU AND

-Antibiotics (d 1-3)

OR

-CVC (d 1-3)

And at least 2 of these TPN (d 1-3) Dialysis (d 1-3) Major surgery (d -7-0) Use steroids (d -7-3)

Immunosupp. (d -7-0)

Sensitivity 34%, specificity 90%, PPV 1%, NPV 97%

Prevalence 7% invasive candidiasis

Maastricht UMC+

Ostrosky-Zeichner, 2007;26:271

Identify patients for empirical/ pre-emptive therapy

Development of "Candida score"

1699 patients, \geq 7 days on IC

Multivariate analysis of risk factors for candidemia

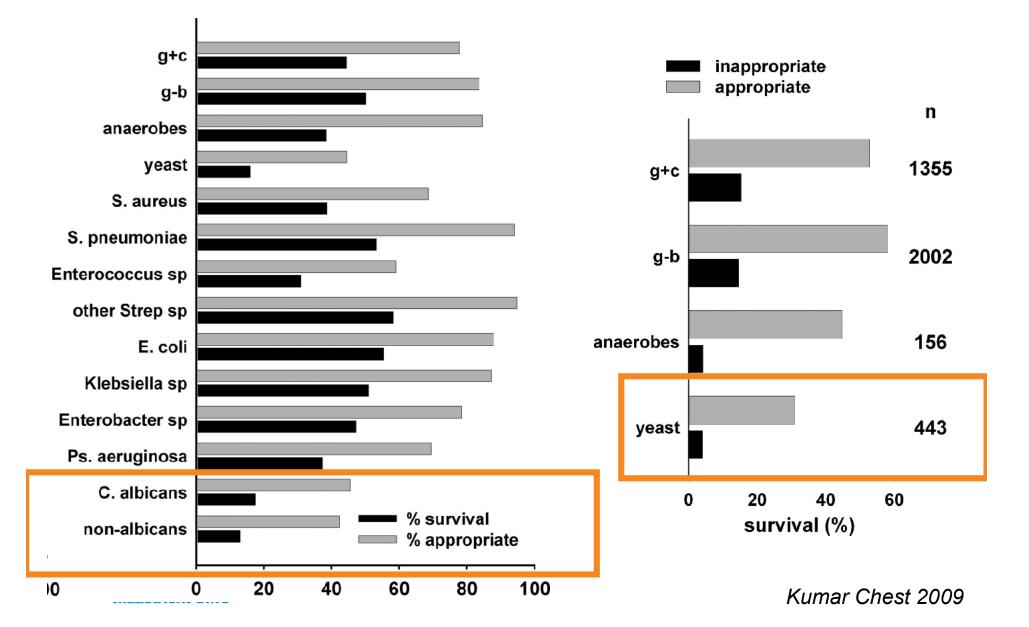
		points				
0	Colonization on multiple locations	1				
0	TPN	1				
0	Surgery at admission	1				
0	Severe sepsis	2				
≥3: sensitivity 81%, specificity 74%						
	PPV 16%, NPV 98%					
laastric	Prevalence 5.8%	León C				

Are the risk predictive models generalizable?

Geographical variability in epidemiology of IC, case-mix & medical practices

Validation in Australia:

	Candida score			
	As reported In Spain (prev = 5,8%)	Applied to Australian data (prev =0.2% 2.0%)		
Sensitivity	81%	15-26%		
Specificity	74%	98%		
PPV	16%	2%		
NPV	98%	98%		
Comments		Application to patients with ICU LOS ≥7d excludes ⅓-½ cases		


Question 4: Empirical treatment is most often inappropriate in septic ICU patients infected with...

- 1 Staphylococcus aureus
- 2 Pseudomonas aeruginosa
- 3 Klebsiella species
- 4 Candida albicans

Question 4: Empirical treatment is most often inappropriate in septic ICU patients infected with...

1 - Staphylococcus aureus0%2 - Pseudomonas aeruginosa0%3 - Klebsiella species0%4 - Candida albicans0%

Appropriate empirical treatment in ICU

HOW TO PREVENT INVASIVE CANDIDIASIS IN THE ICU?

Maastricht UMC+

Antifungal prophylaxis in the ICU?

Pro:

-Reduces the incidence of invasive candidiasis!

with app. 50%

-Again: identification of target patients difficult

- -High risk patients
 - -In high incidence area
 - -Necrotizing pancreatitis
 - -Recurrent GI leakage

Con:

- Unselected ICUs: 1 2% invasive candidiasis
- In most hospitals;
 Ineffective strategy

Empirical antifungal therapy in ICU

- RCT Prospective study in ICU patients Inclusion:
- •Unexplained fever > 4 d
- •Broadspectrum antibiotics \geq 4 d
- •APACHE-II score ≥ 16
- •CVC \ge 1 d

(no colonization criteria!)

\Rightarrow 14d Fluconazole (800mg/d) or placebo

Outcome empirical therapy in ICU

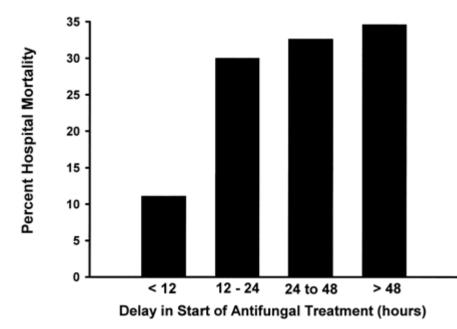
Outcome:

resolution of fever (<38.3, >72h)
no invasive mycosis
no discontinuation for toxicity
no other antifungal drugs

Total failures: 55% vs 57% No resolution of fever 51% vs 54%

Fluconazole (122) Placebo (127)

Success	34%	38%	(0.69-1.32)
Inv. Mycoses	5%	9%	(0.22-1.49)
Mortality	24%	17%	(0.23-1.67)

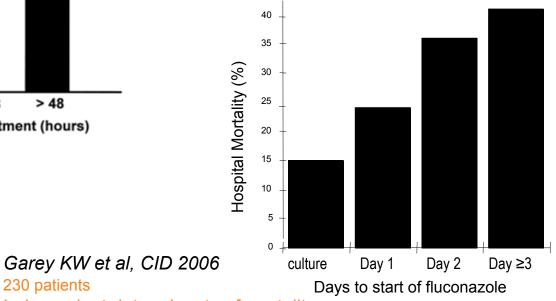

No effect of empirical fluconazole! Why?

Maastricht UMC+

TREATMENT OF INVASIVE CANDIDIASIS

Maastricht UMC+

Time to start antifungal therapy & hospital mortality


Crude mortality rate is high, the attributable mortality rate varies between 5-71%! Falagas EJCMID 2006

Maastricht UMC+

Morrell M, et al. AAC 2005 157 patients - 2001-2004

Independent determinants of mortality:

- > APACHE II score (one-point increments) (p < 0.001)
- Administration of antifungal therapy >12 hours after the first positive blood culture (AOR, 2.09; p = 0.018)

Independent determinants of mortality:

> APACHE II score (Δ 1-pt.; p < 0.05)

230 patients

 \succ Time to fluconazole (AOR, 1.42; p = 0.0009)

Why do we choose which antifungal drug?

- Broad spectrum of antifungal activity
- Efficacy
- Patient characteristics
- Safety / interactions

Antifungal agents

Amphotericin B

- deoxycholate AmB
- lipid formulations

Effective, broad spectrum, but toxic Lipid: expensive

Azols

- Fluconazole
- voriconazole

Echinocandins

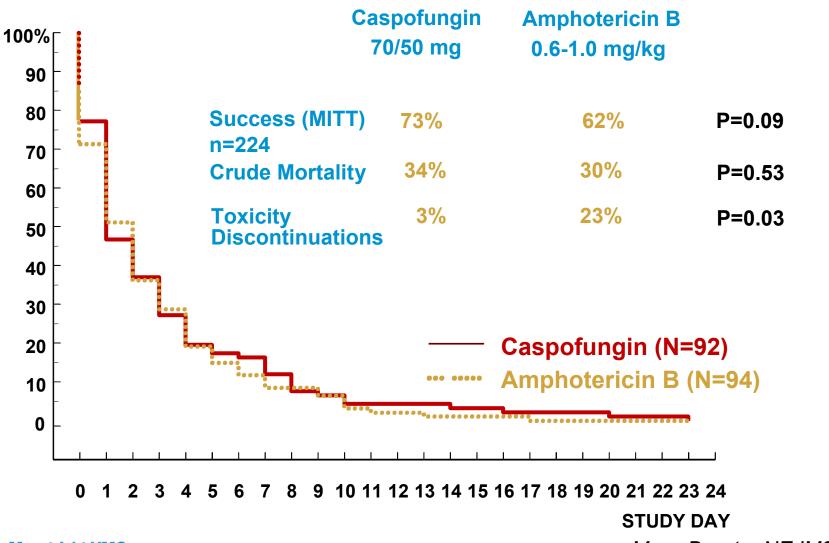
- Caspofungin
- Anidulafungin
- Micafungin
 Maastricht UMC+

Effective, less toxic, less broad spectrum Interactions

Effective, broad spectrum Little toxicity, few interactions Expensive

Randomized Non-Inferior Trials

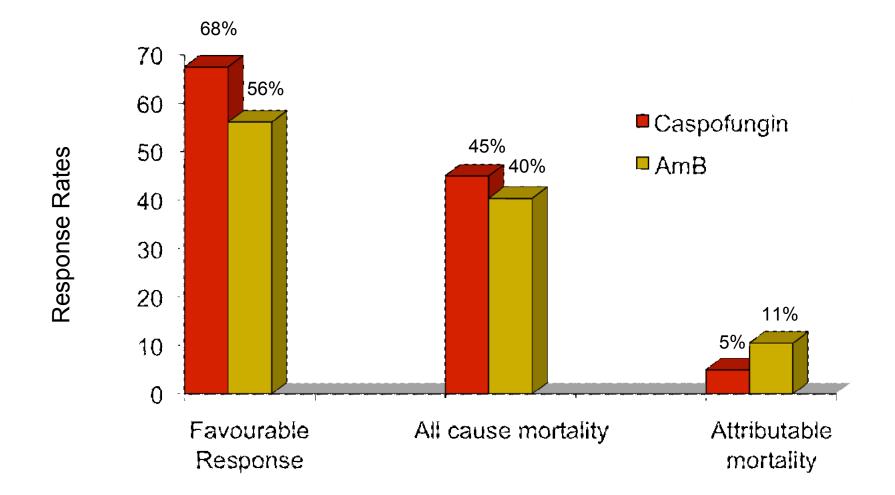
AmB vs fluconazole: equally effective (3 trials)AmB/fluc vs Fluc:equally effective Rex, 2003AmB -> fluc vs Vori:equally effective Kullberg, 2005


Caspofungin vs AmB: equally effective Mora-Duarte, 2002 Micafungin vs L-AmB: equally effective Kuse, 2007 Mica vs Caspo: equally effective Pappas, 2007 Anidulafungin vs fluc: favours Anidula Reboli, 2007

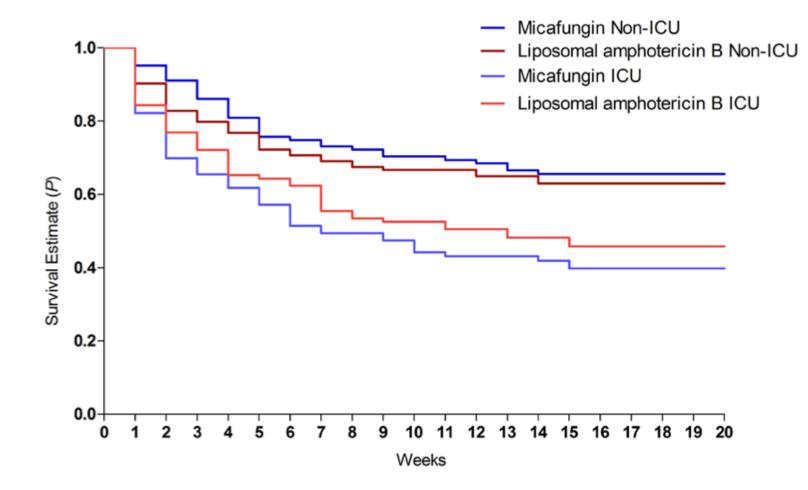
Susceptibility

Antfungal	Albicans	Glabrata	Parapsilosis	Tropicali s	Krusei
AmB-d	S	S	S	S	S
L-AmB	S	S	S	S	S
Fluconazole	S	(SDD)-R	S	S	R
voriconazole	S	SDD-R	S	S	S
Anidulafungin	S	S	S/?	S	S
Caspofungin	S	S	S/?	S	S
micafungin	S	S	S/?	S	S

Caspofungin vs. Amphotericin B trial


Time to First Negative Blood Culture

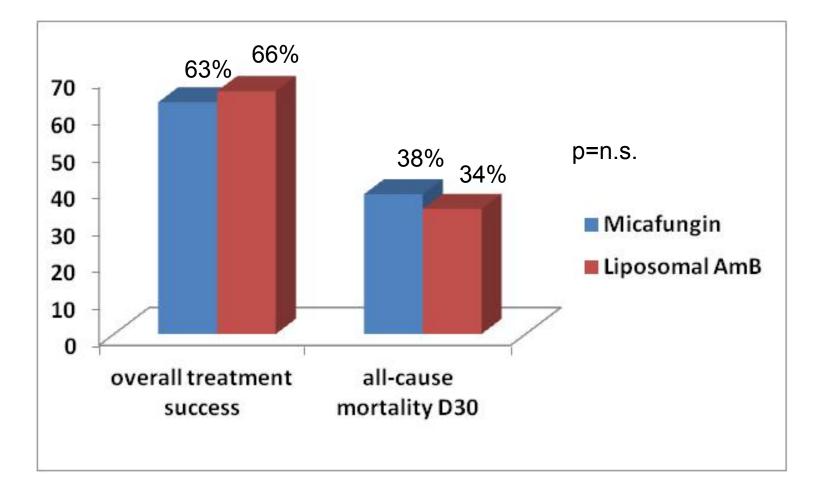
Maastricht UMC+


Mora-Duarte NEJM2002

Caspofungin vs. AmB in ICU Patients (n=97)

DiNubile Crit Care 2007

Micafungin vs. L-AmB in ICU Patients (n=230)



Micafungin versus liposomal amphotericin B: log rank test *P*=0.6840 ICU versus non-ICU: log rank test *P*<0.0001

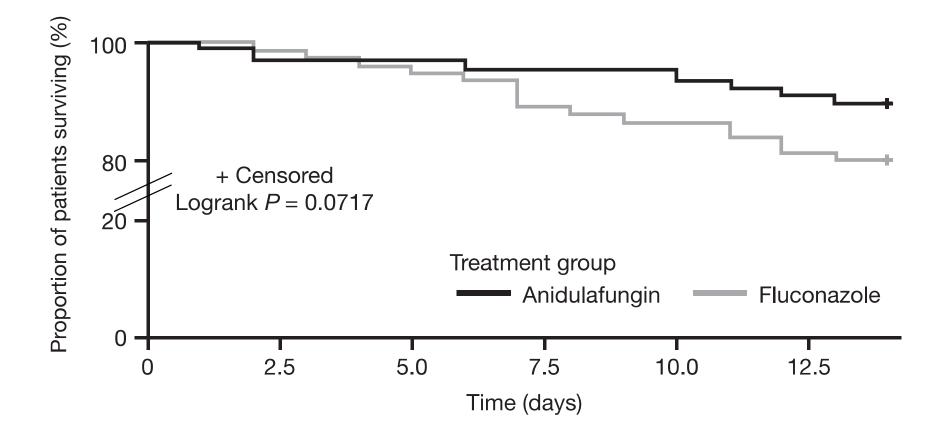
Maastricht UMC+

Dupont Crit Care 2009

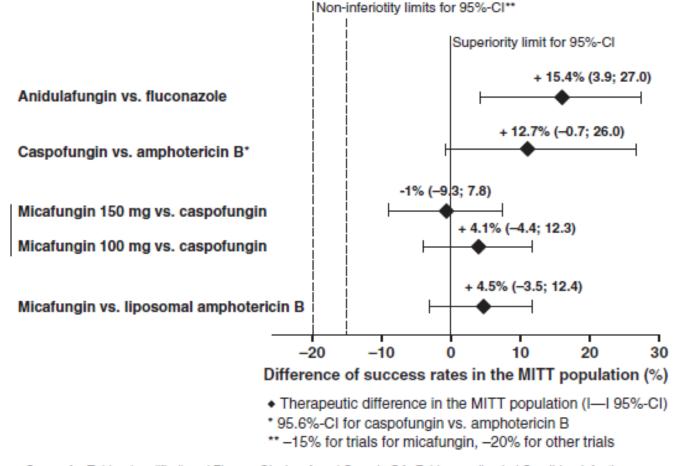
Micafungin vs. L-AmB in ICU Patients (n=230)

Maastricht UMC+

Dupont Crit Care 2009


Anidulafungin vs. fluconazole study

MITT population	Anidulafungin	Fluconazole	Difference
	N=127 (%)	N=118 (%)	95% CI
Success EIV	96 (75.6)	71 (60.2)	15.4 (3.9- 27.0) (p<0.02)
EOT (all)	94 (74.0)	67 (56.8)	17.2 (5.5-29) (p<0.02)
2 wk follow-up	82 (64.4)	58 (49.2)	15.4 (3.1-27.7) (p<0.02)
Crude Mortality Rate (8wks)	23%	31%	P=0.15


Maastricht UMC+

Reboli NEJM 2007

Survival in ICU patients: anidulafugin vs fluconazole

Success rates different echinocandins

Source for Tables (modified) and Figure : Glöcker A and Cornely OA; Echinocandine bei Candida - Infectionen [Treatment of Invasive Candidiasis with Echinocandins] Med Klin 2008; 103:397–405; (Copyright Yrban & Vogel. Reproduced with permission.)

Maastricht UMC+

Glöckner Mycoses2009

Indications per echinocandin

Antifungal agent	Indications	Required daily dose ld/md (minimum treatment duration in days)	Date of approval by US FDA
Caspofungin	Empirical therapy for presumed fungal infections in febrile, neutropenic patients	70/50 (7)	February 2005
	Candidemia, intra-abdominal abscess, peritonitis, pleural space infections	70/50 (14)	July 2003
	Esophageal candidiasis	50 (n.s.)	September 2002
	Invasive aspergillosis if refractory or intolerant to other therapies	70/50 (n.s.)	January 2001
Micafungin	Prophylaxis for <i>Candida</i> infections in hematological stem cell transplantation	50 (n.s.)	March 2005
	Esophageal candidiasis	150 (n.s.)	March 2005
Anidulafungin	Candidemia and intra-abdominal abscess, peritonitis	200/100 (14)	February 2006
	Esophageal candidiasis	100/50 (14)	February 2006

ld/md = Loading dose/daily maintenance dose in milligrams; n.s. = not specified.

Question 5: Should the intravascular catheters be removed < 24h?

- 1 Yes, when > 24h mortality is higher
- 2 No, but < 48h; > 48h mortality is higher
- 3 No, but it should be removed
- 4 Removal of the catheter has no effect on mortality

Question 5: Should the intravascular catheters be removed < 24h?

1 - Yes, when > 24h mortality is higher0%

2 - No, but < 48h; > 48h mortality is higther

3 - No, but it should be removed 0%

4 - Removal of the catheter has no 0% effect on mortality

Antifungal agents and survival

Candidemia and invasive candidiasis

- •7 randomized controlled trials
- •7 antifungal agents (flu, vori, amB, L-amB, caspo, anidula, mica)
- •New analysis of all individual patients
- •Primary endpoint: 30 day survival
- •Excluding: combination therapy, unknown candida species, multiple species infection
- •1915 patients!

Andes pooled data analysis

1915 patients, two polyenes, two triazoles, three candins Logistic regression using 30-day mortality as primary outcome

Increased mortality

- **Decreased mortality**
 - CVC removal during therapy

• APACHE II

• Age

- Echinocandin antifungal
- Immunosuppressive therapy
- C. tropicalis

"These results support first-line treatment with an echinocandin to the majority of patients"

In conclusion

- Invasive candidiasis still has a high mortality rate
- Antifungal prophylaxis in ICU is effective but inappropriate
- Empirical antifungal therapy in ICU is not proven effective
- Prediction rules to start pre-emptive therapy have a hign NPV, and a reasonable specificity. Especially useful in high incidence areas/patients
- Intravascular catheters should be removed/replaced whenever feasible
- Treatment with an echinocandin is preferred, for the higher response rate

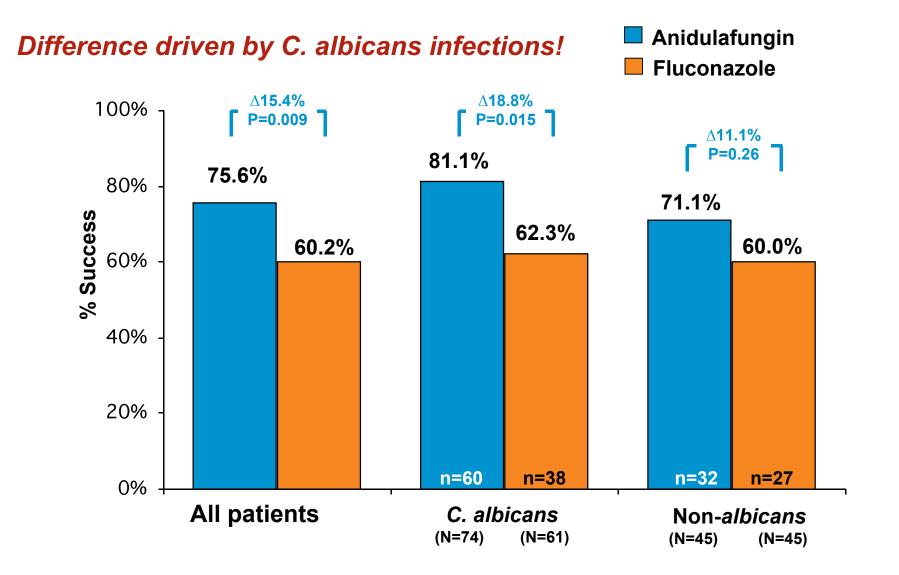
Treatment of invasive candidiasis in non-haematological patients

AML Oude Lashof, MD PhD Internist-infectiologist

Maastricht UMC+

Academisch ziekenhuls Maastricht AZM

Treatment of candidemia


- -Candida species and susceptibility
- -Localization of infection
 - Candidemia only
 - Disseminated disease
- -Mode of administration
- -Duration of candidemia

-...

Empirical treatment is most often inappropriate in septic ICU patients infected with...

1.Staphylococcus aureus2.Pseudomonas aeruginosa3.Klebsiella species4.Candida albicans

Success at EIV treatment by pathogen

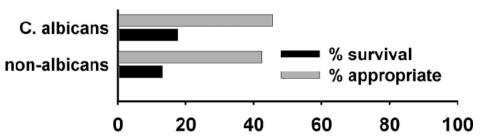
Question 6: Should the intravascular catheters be removed < 24h?

- 1 Yes, when > 24h mortality is higher
- 2 No, but < 48h; > 48h mortality is higher
- 3 No, but it should be removed
- 4 Removal of the catheter has no effect on mortality

Question 6: Should the intravascular catheters be removed < 24h?


1 - Yes, when > 24h mortality is higher0%

2 - No, but < 48h; > 48h mortality is higther


3 - No, but it should be removed 0%

4 - Removal of the catheter has no 0% effect on mortality

Mortality

Crude mortality rate is high, the attributable mortality rate varies between 5-71% depending on the study

Candida Score in practice

Prospective observational multicenter study

- •≥7 days IC with multifocal colonization (1)
- •TPN(1)
- •Surgery (1)
- •Sepsis(2)

Goal: <5% invasive candidiasis in colonized patients

Treatment of a *Candida* infection was initiated by the local team only!

Maastricht UMC+

Results Candida Score in practice

1107 patients

892: colonized / infected

- 565: **CS <3** -> 13 (2.3%) invasive Candida infection
- 327: **CS ≥3** -> 45 (13.8%) invasive Candida infection

Cutoff Value	Incidence Rate (%) (95% CI)	Relative Risk (95% CI)
<3	2.3 (1.1-3.5)	1
3	8.5 (4.2-12.7)	3.7(1.8-7.7)
4	16.8(9.7-23.9)	7.3 (3.7-14.5)
5	23.6 (12.4-34.9)	10.3 (5.0-21.0)

Table 4. Rates of invasive candidiasis according tothe Candida score